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Belief, Prediction, and… Gambling? 
A Short History Lesson 

•  The earliest references to probability calculations 
arose directly through the study of games of chance, 
like dice. 

•  We have evidence of human gambling as early as 
ancient Egypt, more than 3000 years ago. 

•  We have no evidence of probabilistic analysis until 
the time Pascal in the late 1600s.  



The Emergence of Probability 



Probability and Finance:  
It’s Only a Game! 



Letters b/t Pascal and Fermat, 1654 
•  The beginning of mathematical probability is often dated 

to letters between Pierre de Fermat and Blaise Pascal. 
•  The setting discussed by Pierre and Fermat: two players 

are playing a game, they need to get n points to win, and 
the winner receives prize. 

•  How to divide the prize if the game is cut short? 



Bruno de Finetti:  
“PROBABILITY DOES NOT EXIST” 

•  De Finetti, well-known in probability theory, had the view 
that we may only think about probabilities in terms of 
rates of betting. 

•  That is, the laws of probability can be viewed as resulting 
from simple “no-arbitrage” conditions on these rates 



Betting can be used to elicit beliefs 
•  Economists, in particular, are very keen on betting with 

each other. Alex Tabarrok, in marginalrevolution.com:  
“A Bet is a Tax on Bullshit”  

•  There’s been some recent debate in the Econ blogosphere 
about the extent to which bets really do reveal beliefs. 
Noah Smith, of noahpinion.com: “The mistake is looking 
at the risk and return of single assets instead of portfolios. 
Basically, the risk of an asset… is based mainly on how 
that asset related to other assets in your portfolio.” 



How do I find someone to bet with? 
Answer: A Prediction Market 

•  Prediction markets have existed for over 200 years.  
•  Typically, odds (prices) are set by supply and demand. 
•  People began to notice: the market prices are generally 

very accurate, and provide better predictors than expert 
assessments, etc. What’s going on?  

•  Robin Hanson: “Rational expectations theory predicts 
that, in equilibrium, asset prices will reflect all of the 
information held by market participants. This theorized 
information aggregation property of prices has lead 
economists to become increasingly interested in using 
securities markets to predict future events.” 



Outline 
Before the break: 
1.  Predictions Markets in Practice 
2.  Eliciting beliefs with proper scoring rules 
3.  Bregman divergences + proper scoring rules 
4.  Hanson’s Market Scoring Rule 

After the break: 
1.  Securities markets 
2.  Duality & connections to online learning 
3.  Handling very large outcome spaces 
4.  Overview of additional topics 



The Most (in)Famous 
Prediction Market 

•  1999: Intrade founded by John Delaney  
•  2003: Acquired by TradeSports in 2003, later splits off 

after TradeSports closes down in 2008 
•  2004: Intrade gains notoriety during Bush/Kerry election 

for providing continuous forecasts throughout campaign 
•  May 2011: Founder John Delaney dies at age 42 while 

climbing Mt. Everest, less than 50 meters from summit 
•  Nov. 2012: US regulator CFTC files suit against Intrade, 

leading Intrade to disallow US customers from betting 
•  Mar. 2013: Due to “financial irregularities”, Intrade halts 

trading, freezes all accounts. Still remains in legal limbo. 



Example: Intrade 



Iowa Electronic Markets (IEM): 
Legal and with Real Money 

•  Founded in 1988 at the University of Iowa for the purpose 
of research in market prediction accuracy 

•  Received a “no action” letter from the CFTC, permitting 
them to facilitate unregulated betting. (Such letters are 
apparently “no longer being given out”)  

•  On the downside, the IEM must obey a certain set of 
conditions. Most notably, individual traders may deposit 
no more than $500.  



Predictious: A New Bitcoin-based 
Prediction Market 



Example: Inkling Markets 

Internal prediction markets used within companies 



Markets in Practice 
Questions: 
1.  What are different market “mechanisms”?  
2.  How quickly do markets incorporate 

information? 
3.  How accurate are market prices, vis-à-vis 

prediction? 



“Arrow-Debreu Security”: Contract pays $10 if X happens, 
$0 otherwise. If I think that Pr(X) = p then I should: 
•  Buy this security at any price less than $10p  
•  Sell this security at any price greater than $10p 

 Current price measures the population’s collective beliefs 

“Arrow-Debreu” Securities 



[1] Market Mechanisms: 
Continuous Double Auction (CDA) 

•  Used by Intrade.com 
and Betfair.com 

•  Market receives a 
sequence of orders 

•  Two types of orders: 
•  Limit order: trader 

posts shares to 
order book 

•  Market order: 
trader buys shares 
in order book 



Obama2012 Intrade: Bid+Ask+Trades  



Aside: Problems with the CDA 
•  Chicken and egg problem: who is willing to join a market 

if there are no other participants? 
•  Not a lot of “liquidty”: it’s very easy to swing prices 
•  Large bid/ask spreads 

•  Alternative mechanism: the automated market maker, 
which we will be discussing throughout the 2nd half of the 
tutorial 



[2] How Quickly do Markets Respond? 

Source: Snowberg, Wolfers, Zitzewitz 2012 



[3] Are Market Prices Accurate? 
•  The market price for Arrow-Debreu security is essentially 

a “consensus estimate” of the probability of an event 

•  Are these estimates accurate? 

•  We can check this on historical data, but… 
•  Prices are changing, which price do we use? 
•  What is the right metric to measure accuracy? 
•  What are we comparing against? 



Market Prediction vs. True Vote Share 

Berg et al., 2008: “Results From a Dozen Years of 
Election Futures Markets Research” 



Average Polls vs. Market Prices 

Poll Error: 
(average from 
last week) 

1.91% 

Market Error: 
(election eve) 

1.49% 

Market Error: 
(average from 
last week) 
 

1.58% 

Berg et al., 2008: “Results From a Dozen Years of 
Election Futures Markets Research” 



Aside: Supreme Court + Health Care 
Intrade market: “The US Supreme Court to rule individual  

mandate unconstitutional before midnight ET 31 Dec 2012” 



More on Obamacare Prediction Market 
•  David Leonhardt in the NYTimes: “After several years in 

which the market was often celebrated as a crystal ball, 
the Supreme Court ruling was a useful corrective. The 
prediction-market revolution, like so many others, 
initially promised more than it could deliver.” 

•  Response by Robin Hanson on overcomingbias.com: “But 
the Intrade market on the Obamacare court case was an 
active valid market, on an appropriate subject. When it 
assigned a 75% chance to an event it was saying real loud 
that it would be wrong 1/4 of the time. And studies have 
consistently found such markets are well-calibrated in this 
way. What more do you want?” 



The Basics: Proper Scoring Rules 



1950: Brier on Weather Forecasting 







How Should We Pay a Forecaster? 

 What is the “right” payment scheme to reward/punish a 
forecaster who makes a sequence of probability 
predictions for events that we observe?  

•  The sequence of outcomes: 

•  The sequence of forecasts: 

•  The forecaster’s payment:  

y1, y2, y3, ...∈ {0,1}

p1, p2, p3, ...∈ [0,1]

€ 

1
T

S(yt , pt )
t=1

T

∑



Brier Score ó Quadratic Scoring Rule 

•  For a binary outcome y ∈ {0,1}, p ∈ [0,1] 

•  For one of n outcomes, y ∈{1,...,n}, p ∈ ∆n 

S(y, p) = −(y− p)2

S(y,p) = − (1y=i − pi )
2

i=1

n

∑



What’s Special About This Function? 

 Assume y is random and Pr(y = 1) = q.  Then... 

€ 

p∈[0,1]
argmax Ε −(y − p)2[ ]( )

S(y, p) = −(y− p)2

€ 

=
p∈[0,1]
argmax −(p − q)2 − q + q2( ) = q

€ 

=
p∈[0,1]
argmax −q(1− p)2 − (1− q)p2( )



Proper Scoring Rules 
•  What we have just introduced is the notion of a proper 

scoring rule, any function S satisfying 

•  The scoring rule is said to be strictly proper if the above 
inequality is strict unless p = q 

€ 

Εy~q S(y,q)[ ] ≥ Εy~q S(y,p)[ ] ∀p,q∈ Δ n



Another Strictly Proper Scoring Rule 

•  This is known as the logarithmic scoring rule. For binary 
random variables, it can be written as: 

•  EXERCISE: check that this is proper! 
 

€ 

S(y,p) = log p(y)

S(y, p) =
log p y =1

log(1− p) y = 0

"
#
$

%$



•  Effectively, a scoring rule is just a type of loss function 

•  Scoring rules measure the performance (not loss) of a 
predicted distribution given a final outcome 

 
•  Research on scoring rules is focused more heavily on the 

incentives of the associated payment mechanism 

Scoring Rules == –Loss Functions? 



Designing Scoring Rules  
Using Bregman Divergences 



Savage 1973  



Digression: Bregman Divergences 
•  A Bregman divergence measures distance with respect to 

a convex function f 

€ 

Df (p,q) = f (p) − f (q) −∇f (q) ⋅ (p − q)



Digression: Bregman Divergences 

 
•  Properties: 

€ 

Df (p,q) ≥ 0 ∀p,q

€ 

Df (p,q) ≠ Df (q, p) (in general)€ 

Df (p, p) = 0 ∀p€ 

Df (p,q) = f (p) − f (q) −∇f (q) ⋅ (p − q)



Bregman Divergences III 

•  Example 1, quadratic: 

•  Example 2, entropic: 

€ 

f (p) = || p ||2 ⇒ Df (p,q) = || p − q ||2

f (p) = pi log pi
i
∑ ⇒ Df (p,q) = pi log

pi
qii

∑

€ 

Df (p,q) = f (p) − f (q) −∇f (q) ⋅ (p − q)



Bregman Diverg.ó Scoring Rule?? 
•  Let f be any convex function 
•  Let ei be the ith indicator vector, ei = 〈0,…,0,1,0,…,0〉	

•  Let p, q be any two distributions 
•  Fact: There exists a function g such that 

 
 and so  

•  This is the scoring rule property!! 
 

€ 

E i~q Df (e i,p)[ ] = Df (q,p) + g(q)

€ 

argmax
p∈Δn

E i~q −Df (e i,p)[ ] = q



Bregman Diverg.ó Scoring Rule!! 
•  We now have a recipe for constructing scoring rules: 

Take any convex function f  and set 

•  Quadratic Scoring Rule: 

•  Log Scoring Rule: 
€ 

S(i,p) = −Df (e i,p)

f (p) =||p ||2
2

f (p) = pi log pii∑



Brief Literature Review 



Market Scoring Rules  
for Belief Aggregation 



Learning a Consensus? 
•  Scoring rules are useful for incentivizing one individual to 

state his beliefs about a probability, but what if we’d like 
to learn from a crowd 

•  Proposal: We could just pay every individual according 
to a scoring rule. 

•  Problems: 
•  This could be very expensive! 
•  How should we combine estimates? 
•  How can we weed out noise traders? 
•  How can we weed out copycats? 



Market Scoring Rules 
 Robin Hanson proposed the following idea to create a 
prediction market based on an automated market maker: 

•  Suppose we have a random variable X which will take 
one of n values {1, 2, …, n} 

•  The MM chooses a scoring rule S and announces it 
•  The MM then posts an initial distribution (prior) p0 

•  Traders arrive, one-by-one, giving updates pt-1 → pt 

•  Eventually, outcome X is revealed, and trader t earns (or 
loses) 

 

S(X,pt )− S(X,pt−1)



Market Scoring Rule 

B C

A

p0 

pt 
p2 

p1 



Incentives and Costs 
•  Assume trader t has belief distribution p on X, which can 

(and should!) depend on previous market observations 
•  Suppose he wants to maximize his payment 

 
 

•  The MM must make all payments, which total 

•  This is bounded! This is like MM’s subsidy to market. 

argmaxpt ΕX~p[S(X,pt )− S(X,pt−1)]

€ 

S(X,pt ) − S(X,pt−1)[ ]
t=1

T

∑ = S(X,pT ) − S(X,p0)

= p= argmaxpt ΕX~p[S(X,pt )]
always non-negative! 



LMSR: Log Market Scoring Rule 
•  Initial hypothesis p0 is the uniform distribution 
•  Trader t posts an update pt-1 → pt  
•  After X is revealed, trader t earns log(pt(X)/pt-1(X)) 

•  Hanson: the LMSR is an important special case, the only 
MSR for which “betting on conditional probabilities does 
not affect marginal probabilities” 

•  The market maker’s worst case loss is bounded by log n, 
where n is the number of possible values of X 



Prediction, Belief, and Markets: 
Part 2 

Jake Abernethy, UPenn → UMich 
Jenn Wortman Vaughan, Microsoft Research NYC 

http://aaaimarketstutorial.pbworks.com 



Outline of Part 2 

1.  Automated market makers for securities markets 
2.  Designing markets for large outcome spaces 
3.  Duality & connections to online learning 
4.  Recent extensions and additional topics 



Back to Securities Markets 



Arrow–Debreu Securities 



Potential payoff is $10. If I think that the probability of this 
event is p, I should 
•  Buy this security at any price less than $10p  
•  Sell this security at any price greater than $10p 

 Current price measures the population’s collective beliefs 

Arrow–Debreu Securities 



How do we arrive at the current price? 

Arrow–Debreu Securities 



How do we arrive at the current price? 
•  Traditional stock market style pricing (continuous double 

auction) – low liquidity, huge spreads 

Arrow–Debreu Securities 



How do we arrive at the current price? 
•  Traditional stock market style pricing (continuous double 

auction) – low liquidity, huge spreads 
•  Automated market maker – willing to risk a (bounded) 

loss in order to encourage trades 

Arrow–Debreu Securities 



•  In a complete market, a security is offered for each of a 
set of mutually exclusive and exhaustive events 

 

Market Makers for Complete Markets 



•  In a complete market, a security is offered for each of a 
set of mutually exclusive and exhaustive events 

 

Market Makers for Complete Markets 

Worth 
$1 iff          

Worth 
$1 iff          



•  In a complete market, a security is offered for each of a 
set of mutually exclusive and exhaustive events 

•  An automated market maker is always willing to buy and 
sell these securities at some price 

 

Market Makers for Complete Markets 

Worth 
$1 iff          

Worth 
$1 iff          



 
 
 
 

 
 

 

Cost Functions 



 
 
 
 

 
Already purchased:  q1 shares   q2 shares 
 

 

Cost Functions 

Worth 
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Worth 
$1 iff          



 
 
 
 

 
Already purchased:  q1 shares   q2 shares 
Want to purchase:   r1 shares   r2 shares 
 

 

Cost Functions 

Worth 
$1 iff          

Worth 
$1 iff          



Cost of purchase: 
  C(q + r) – C(q) 
 

 
Already purchased:  q1 shares   q2 shares 
Want to purchase:   r1 shares   r2 shares 
 

 

Cost Functions 

Worth 
$1 iff          

Worth 
$1 iff          



Cost of purchase: 
  C(q + r) – C(q) 
 

 
Already purchased:  q1 shares   q2 shares 
Want to purchase:   r1 shares   r2 shares 
 

Instantaneous prices:  p1 = ∂C / ∂q1  p2 = ∂C / ∂q2 

 

Cost Functions 

Worth 
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Cost of purchase: 
  C(q + r) – C(q) 
 

 
Already purchased:  q1 shares   q2 shares 
Want to purchase:   r1 shares   r2 shares 
 

Instantaneous prices:  p1 = ∂C / ∂q1  p2 = ∂C / ∂q2 

 

Cost Functions 

Worth 
$1 iff          

Worth 
$1 iff          

“predictions” 



Back to the LMSR 
Remember the logarithmic market scoring rule… 

•  Initial hypothesis p0 is the uniform distribution 

•  Trader t posts an update pt-1 → pt  

•  After outcome i is revealed, trader t receives 
log(pt,i) – log(pt-1,i) = log(pt,i / pt-1,i) 



The logarithmic market scoring rule can be implemented as 
a cost function based market with cost function 

 
  

 

  and instantaneous prices 
 
 

 
 

Back to the LMSR 

pi = exp(qi ) 
Σj exp(qj ) 

€ 

C(q1,...,qN) = log exp(qi)
i = 1

N
∑



The logarithmic market scoring rule can be implemented as 
a cost function based market with cost function 

 
  

 

  and instantaneous prices 
 
 
 
Notice that pi is increasing in qi and the prices sum to 1 
 
 
 
 

 
 

Back to the LMSR 

pi = exp(qi ) 
Σj exp(qj ) 

€ 

C(q1,...,qN) = log exp(qi)
i = 1

N
∑



Equivalence 

 For all p, p', q, q', such that ∇C(q) = p and ∇C(q') = p', 
for all outcomes i, a trader who changed the market state 
from p to p' in the MSR would receive the same total 
payoff as a trader who changed the market state from q to 
q' in the cost function based market. 

 
 [Hanson 03; Chen & Pennock 07] 



A Proof in One Slide 



A Proof in One Slide 

€ 

= q'i −qi( ) − C(q') −C(q)( )

cost function payoff   

security value when 
the outcome i occurs 

cost of the purchase 



A Proof in One Slide 

€ 

= q'i −qi( ) − C(q') −C(q)( )

cost function payoff   



A Proof in One Slide 

€ 

= q'i −qi( ) − log eq' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 

€ 

= q'i −qi( ) − C(q') −C(q)( )

cost function payoff   

by definition 



A Proof in One Slide 

€ 

= q'i −qi( ) − log eq' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 

€ 

= q'i −qi( ) − C(q') −C(q)( )

cost function payoff   



A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 
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A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 
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= log
eq ' i

eq ' j
j
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A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 

€ 

= log
eq ' i

eq ' j
j
∑

− log
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eq j

j
∑ prices! 



A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= log p'i −log pi
€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 

€ 

= log
eq ' i

eq ' j
j
∑

− log
eqi

eq j

j
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A Proof in One Slide 
cost function payoff   

€ 

= q'i −qi( ) − C(q') −C(q)( )

€ 

= log
eq ' i

eq ' j
j
∑

− log
eqi

eq j

j
∑

= scoring rule payoff   

€ 

= log p'i −log pi
€ 

= logeq' i − logeqi( ) − log eq ' j
j
∑ − log eq j

j
∑

$ 

% 
& & 

' 

( 
) ) 



More Generally 

•  Any market scoring rule can be implemented as a cost 
function based market [Chen & Pennock 07; Chen & 
Vaughan 10; Abernethy & Frongillo 11; …] 



More Generally 

•  Any market scoring rule can be implemented as a cost 
function based market [Chen & Pennock 07; Chen & 
Vaughan 10; Abernethy & Frongillo 11; …] 

•  Advantages: 
•  Retains the good incentive properties of the MSR 
•  Arguably more “natural” for traders 
•  Exposure to risk is more transparent 



Beyond Complete Markets 



Complex Outcome Spaces 

n! 2n Infinite 



Complex Outcome Spaces 

n! 2n Infinite 

MSR-NYC’s WiseQ 
[Dudik et al., 2013] 



•  Cannot simply run a standard market like LMSR 
•  Calculating prices is intractable [Chen et al., 2008] 
•  Reasoning about probabilities is too hard for traders 

 

Complex Outcome Spaces 

n! 2n Infinite 



•  Cannot simply run a standard market like LMSR 
•  Calculating prices is intractable [Chen et al., 2008] 
•  Reasoning about probabilities is too hard for traders 

•  Can run separate, independent markets (e.g., horses to 
win, place, or show) but this ignores logical dependences 

Complex Outcome Spaces 

n! 2n Infinite 



Complex Outcome Spaces 
  

 
 

 Given a small set of securities over a very large (or 
infinite) state space, how can we design a consistent 
market that can be operated efficiently? 

 
 [Abernethy, Chen, and Vaughan, EC 2011; 
  long version in ACM TEAC 2013] 



Menu of Securities 
We would like to offer a menu of securities{1, …, K} 

specified by a payoff function ρ 
 



Menu of Securities 
We would like to offer a menu of securities{1, …, K} 

specified by a payoff function ρ 
 

10 0 5.5 0 17 0 
.9 .9 .9 0 .9 .9 
0 42 0 10 10 10 
0 0 11.5 8 0 0 
1 0 0 0 0 1 

securities 

outcomes 

payoff 



Example: Pair Betting 
 

$1 if and only if horse i finishes ahead of horse j 



Example: Pair Betting 
 

$1 if and only if horse i finishes ahead of horse j 

A<B B<A A<C C<A B<C C<B 
ABC 1 0 1 0 1 0 
ACB 1 0 1 0 0 1 
BAC 0 1 1 0 1 0 
BCA 0 1 0 1 1 0 
CAB 1 0 0 1 0 1 
CBA 0 1 0 1 0 1 



What are “reasonable” prices? 



What are “reasonable” prices? 

For complete markets…  
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What are “reasonable” prices? 

For complete markets…  

For pair betting… 

 

€ 

pi =1
i
∑

€ 

pi< j + p j< i =1

what else? 

€ 

1≤ pi< j + p j<k + pk< i ≤ 2



What are “reasonable” prices? 

For complete markets…  

For pair betting… 

In general… 

€ 

pi =1
i
∑

€ 

pi< j + p j< i =1

€ 

1≤ pi< j + p j<k + pk< i ≤ 2

what else? 

??? 



An Axiomatic Approach 
 
Path independence: The cost of acquiring a bundle r of 

securities must be the same no matter how the trader splits 
up the purchase. 
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Path independence: The cost of acquiring a bundle r of 

securities must be the same no matter how the trader splits 
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An Axiomatic Approach 
 
Path independence: The cost of acquiring a bundle r of 

securities must be the same no matter how the trader splits 
up the purchase.  Formally,  

 Cost(r + r’ | r1, r2, …, rt)  
 = Cost(r | r1, r2, …, rt) + Cost(r’ | r1, r2, …, rt, r)    

 
 
 

This alone implies the existence of a cost potential function! 
  

 Cost(r | r1, r2, …, rt)  
 = C(r1 + r2 + … + rt + r) – C(r1 + r2 + … + rt)  



An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 



An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 

•  Information incorporation: The purchase of a bundle r 
should never cause the price of r to decrease 



An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 

•  Information incorporation: The purchase of a bundle r 
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•  No arbitrage: It is never possible to purchase a bundle r 
with a guaranteed positive profit regardless of outcome 



An Axiomatic Approach 
•  Existence of instantaneous prices: C must be continuous 

and differentiable 

•  Information incorporation: The purchase of a bundle r 
should never cause the price of r to decrease 

•  No arbitrage: It is never possible to purchase a bundle r 
with a guaranteed positive profit regardless of outcome 

•  Expressiveness: A trader must always be able to set the 
market prices to reflect his beliefs  



An Axiomatic Approach 
Theorem: Under these five conditions, costs must be 

determined by a convex cost function C such that 

{∇C(q) : q ∈ RK} ≈ Hull(ρ) 
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An Axiomatic Approach 
Theorem: Under these five conditions, costs must be 

determined by a convex cost function C such that 

{∇C(q) : q ∈ RK} ≈ Hull(ρ) 

 [ 

10 0 5.5 0 17 0 
.9 .9 .9 0 .9 .9 
0 42 0 10 10 10 
0 0 11.5 8 0 0 
1 0 0 0 0 1 

securities 

outcomes 

reachable 
price vectors 



An Axiomatic Approach 
Theorem: Under these five conditions, costs must be 

determined by a convex cost function C such that 

{∇C(q) : q ∈ RK} ≈ Hull(ρ) 

 [ 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

outcomes 

securities 

reachable 
price vectors 



Cost Functions Via Duality & 
The Connection to Online Learning 
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•  Fact: A closed, differentiable function C is convex if and 
only if it can be written in the form 

 

C(q) =   sup  x⋅q – R(x) 
 

 for a strictly convex function R called the conjugate. 

 Furthermore, ∇C(q) = arg max x⋅q – R(x) 
 
 

To generate a convex cost function C, we just have to 
choose an appropriate conjugate function and domain!  

How do we find these cost functions? 

x ∈ dom(R)   

x ∈ dom(R)   
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But how do we choose R? 
  

 
 We can borrow ideas from online linear optimization (or 
the simpler expert advice setting) and in particular, 
Follow the Regularized Leader algorithms 
•  Market’s conjugate function ≈ regularizer 
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What is the goal? 
•  Ideally, we’d like to bound the cumulative loss 
 
•  Instead, we look at the algorithm’s regret 
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What is the goal? 
•  Ideally, we’d like to bound the cumulative loss 
 
•  Instead, we look at the algorithm’s regret 

•  Can achieve optimal (O(T½)) regret with Follow the 
Regularized Leader  

€ 

wt ⋅ l t
t=1

T

∑

€ 

wt ⋅ l t − min
w∈Kt=1

T

∑ w ⋅ LT

cumulative loss regularizer 

wt+1 = argmin
w∈K

w ⋅Lt + R(w)
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An Example 
•  Let K = Π = Δn and 

•  Then there is a closed form solution for the prices/
weights: 

€ 

R(p) = pi log pi
i
∑

pi = exp(qi ) 
Σj exp(qj ) 

wi = exp(Li ) 
Σj exp(Lj ) 

randomized weighted 
majority / hedge 

logarithmic market 
scoring rule 
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More on Choosing R 
•  Interesting market properties can be described in terms of 

the conjugate… 

•  Worst-case market maker loss can be bounded by 
sup  R(x) – inf  R(x) 

 
 

•  Information loss (or the bid-ask spread, or the speed at 
which prices change) can be bounded too 

 
Gives us a way to optimize trade-offs in market design! 
 

x ∈ Hull(ρ)  x ∈ Hull(ρ)  



Example: Permutations 
•  Suppose our state space is all permutations of n items 

(e.g., candidates in an election, or horses in a race) 
 

 
 

 



Example: Permutations 
•  Suppose our state space is all permutations of n items 

(e.g., candidates in an election, or horses in a race) 

•  Pair bets: Bets on events of the form “horse i finishes 
ahead of horse j” for any i, j 

•  Subset bets: Bets on events of the form “horse i 
finishes in position j” for any i, j 

 
 

 



Example: Permutations 
•  Suppose our state space is all permutations of n items 

(e.g., candidates in an election, or horses in a race) 

•  Pair bets: Bets on events of the form “horse i finishes 
ahead of horse j” for any i, j 

•  Subset bets: Bets on events of the form “horse i 
finishes in position j” for any i, j 

•  Both known to be #P-hard to price  
 using LMSR [Chen et al., 2008] 

 

•  The complex market framework handles both 
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Example: Permutations 
 
 

 Subset bets (“horse i finishes in position j”) 
•  Hull(ρ) can be described by a small number of 

constraints: 

•  Easily handled 

€ 

price(
j
∑ i in slot j) =1

€ 

price(
i
∑ i in slot j) =1
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Example: Permutations 

 
 Pair bets (“horse i finishes ahead of horse j”) 
•  Hull(ρ) is a bit uglier… 
•  Solution: Relax the no-arbitrage axiom 
• Allows us to to work with a larger, efficiently 

specified price space 
• But does it increase worst case loss?  No! 



Extensions and Additional Topics 



Relaxing No-Arbitrage 
•  Dudík, Lahaie, and Pennock [2012] pushed on the idea of 

relaxing no-arbitrage to provide a general constraint 
generation technique for constructing efficient markets 
with “approximately consistent” prices 

•  Used this to implement the WiseQ market which allowed 
combinatorial bets the 2012 US presidential and senate 
elections [Dudík et al., 2013] 



Continuous Outcome/Contract Spaces 
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Continuous Outcome/Contract Spaces 

•  Can discretize the outcome space ex ante, but complexity 
and worst-case loss grow with the number of outcomes 

•  Most early attempts to avoid ex ante discretization led to 
negative results [e.g., Gao and Chen, 2010] 

•  Chen, Ruberry, and Vaughan [2013] extended the duality 
framework to markets over continuous outcome spaces, 
generating markets with bounded worst case loss 
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Continuous Outcome/Contract Spaces 

•  Still lots of work to do here quantifying trade-offs 
between discretization and specially designed markets!! 
•  Worst case loss 
•  Computational complexity 
•  Granularity of predictions 

0 cm 20 cm 

$1 $0 $0 



Making a Profit / Adaptive Liquidity 
•  We have assumed that the market maker is willing to take 

a potential (bounded) loss in order to obtain information 

•  The ideas presented here can be modified to yield market 
makers guaranteed to earn a profit if the volume of trades 
is sufficiently high and traders disagree [e.g., Othman & 
Sandholm, 2011; Li & Vaughan, 2013] 

•  Yields markets with adaptive liquidity 

•  In the complete market setting, this requires that prices 
sum to something more than one – adds some ambiguity 
when backing out probability estimates 



Markets & Variational Inference 
•  The math behind these markets also parallels the math 

behind variational inference 

  mean parameter  ↔  prices 
  natural parameter  ↔  quantity vector 
  sufficient statistics ↔  payoff function 

 
•  This connection can be used to design new scoring rules 

[e.g., Lahaie, working paper, 2012] 



Price Convergence & Aggregation 
•  When do security prices converge, and do they reflect the 

private information or beliefs of the traders? 

•  Ostrovsky [2012] showed that prices generally converge 
and incorporate traders’ private information if traders are 
risk neutral and Bayesian with a common prior 

•  Price convergence also occurs for risk averse traders with 
heterogeneous beliefs and budgets [Sethi and Vaughan, 
working paper 2013] 

•  Lots to do here too!  Which model(s) are reasonable?  
What happens in real markets? 



See the tutorial website for additional 
references: 

http://aaaimarketstutorial.pbworks.com 


